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Abstract

This work is an in-depth study of a boundary effect detection (BED) method for pinpointing locations of small
damages in beams using operational deflection shapes (ODSs) measured by a scanning laser vibrometer. The BED
method requires no model or historical data for locating structural damage. It works by decomposing a measured ODS
into central and boundary-layer solutions using a sliding-window least-squares curve-fitting technique. For high-order
ODS:s of an intact beam, boundary-layer solutions are non-zero only at structural boundaries. For a damaged beam, its
boundary-layer solutions are non-zero at the original boundaries and damage locations because damage introduces new
boundaries. At a damage location, the boundary-layer solution of slope changes sign, and the boundary-layer solution
of displacement peaks up or dimples down. The theoretical background is shown in detail. Noise and different types of
damage are simulated to show how they affect damage locating curves. Experiments are performed on several different
beams with different types of damage, including surface slots, edge slots, surface holes, internal holes, and fatigue
cracks. Experimental results show that this damage detection method is sensitive and reliable for locating small
damages in beams. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, structural health monitoring using dynamic response has been shown to be a feasible
approach for detecting and locating damage (Doebling et al., 1996). A crack in a structure introduces local
flexibilities and changes dynamic characteristics of the structure. Hence, the crack location and size can be
determined from the change of dynamic characteristics (Kam and Lee, 1994; Doebling et al., 1996). To
detect small cracks using structural dynamic response, high-frequency excitation is necessary in order to
reduce wavelengths, to increase curvatures, and to activate the gaping of cracks. However, high-frequency
deformation shapes require spatially dense and accurate measurements. More seriously, the most popular
structural modeling technique, the displacement-based finite-element method, is not accurate in predicting
high-frequency response because internal bending moments and shear forces are not formulated to be
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continuous at nodes. In other words, the two major problems in dynamics-based damage detection are (1)
how to reduce spatial aliasing in dynamic response measurements and (2) how to extract clear damage
signals from the measured dynamic response without using a structural model for reference. Hence, a tool
for high-density measurements and an accurate model-independent damage detection method is really
necessary for performing practical structural damage detection.

Spatial aliasing is due to insufficient dynamic response measurements. A scanning laser vibrometer
provides a unique solution to this problem because of its non-contact (measuring structural velocities by
checking the frequency shift of a backscattered laser beam), remote (up to 30 m away), large-area scanning
(up to 40° x 40°), dense (up to 512 x 512 points), high frequency bandwidth (0.2 Hz to 200 kHz), and
accurate (a velocity resolution up to 0.1 um/s) measurement capabilities. To extract clear damage signals
from the measured large amount of dynamic response data, a newly developed boundary effect detection
(BED) method is able to extract damage-induced boundary-layer effects from structural operational de-
flection shapes (ODSs) measured by a scanning laser vibrometer (Pai and Jin, 2000). An ODS is the de-
flection shape of a structure subjected to a single-frequency harmonic excitation. When the excitation
frequency is close to an isolated natural frequency of the structure, the ODS is dominated by the corre-
sponding mode shape. If it is not an isolated natural frequency, the ODS may consist of multiple mode
shapes. The BED method is a model-independent method; it uses a sliding-window least-squares curve-
fitting method to decompose an ODS into central and boundary-layer solutions. Because damage intro-
duces new boundaries to a structure, boundary-layer solutions exist around damages and original
boundaries and hence can reveal damage locations. Experiments have been performed to verify the ca-
pability of this BED method in locating surface slots and stiffened sections (Pai and Jin, 2000). The results
indicate that the BED method seems more sensitive and reliable than other dynamics- or deformation-
based methods, including digital shearography (Sirohi et al., 1999), curvature methods, and strain energy
methods. However, some difficulties and limitations have been observed.

This work is to provide in-depth studies of the BED method in locating different types of damage, to
improve this method, and to experimentally verify the accuracy of this method in detecting multiple
damages. Next, we derive the BED method of Pai and Jin, 2000 using an alternative approach.

2. Boundary effect detection method

To show the theory without complex derivations we consider one-dimensional structures (i.e., beams)
and assume that the obtained ODS consists of only one mode shape. We will show that the BED method
works for flexural, torsional, and longitudinal ODSs. Next, we show the theoretical background of using
flexural ODSs to detect damage.

2.1. Flexural vibration

For a beam the equation governing flexural vibrations is given by
(EW")" + ew + miv = f(x,1), (1)

where E'is Young’s modulus, /, the area moment of inertia, ¢, the damping coefficient, m, the mass per unit
length, £, the distributed external load, x, the spatial coordinate, z, the time, w the transverse displacement,
() =09()/ox, and (') =0( )/0t. The ith mode shape W, of a uniform beam is the free undamped de-
flection shape vibrating at the ith natural frequency w; and is given by

2\ /4
W (x) = c1 cos Bix + ¢y sin B.x + c3 cosh Bx + ¢y sinh fix,  f; = (ng;’ ) , (2)
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where the coefficients ¢; can be determined using boundary conditions and f; is determined by the corre-
sponding frequency equation.
For any boundary conditions, Dugundji et al. (1988) showed that, when the mode number i is not small,

W;(x) = c1 €08 fix + ¢y sin fx + ce P cge Pl (3)

where L is the beam length.

In solid mechanics, St. Venant’s principle implies that a system of loads having zero resultant forces and
moments (i.e., a self-equilibrated stress system) produces a displacement field that is negligible at points far
away from the loading end (Iesan, 1987). The deformations caused by such a self-equilibrated load system
have a short decay length and are called boundary-layer solutions (Iesan, 1987; Giavotto et al., 1983). On
the other hand, the deformations at points away from the ends where nontrivial stress resultants are applied
are called central solutions (Iesan, 1987; Giavotto et al., 1983). For a structure under free vibration, ex-
ternal loads are acting only at its boundaries. Hence, boundary-layer solutions exist only around the
boundaries, and their magnitudes depend on the actual distributions of constraints at the boundaries.

We note that the third and fourth terms in Eq. (3) are boundary-layer solutions because these two terms
are zero at a point away from the left and right boundaries (i.e., x = 0,L). It indicates that cosh f/,x and
sinh f,x in Eq. (2) are due to boundary constraints, and cos f,x and sin f§,x are central solutions. To extract
boundary-layer solutions from an ODS, we will use a sliding-window least-squares curve-fitting method
and a moving coordinate X which is defined as

X=X—Xnp. (4)
Here x,, is the location of the point under observation. Using Eq. (4) one can rewrite Eq. (2) as
W (x) = c1 cos(fxm + pX) + cp sin(fxm + px) + c3 cosh(Pxy + fX) + ¢4 sinh(fxy, + fX)
= C; cos(fx) + Cysin(fx) + C; cosh(fx) + Cy sinh(fx), (5)

where the subindex i is dropped to simplify the notation, and

C = \/c%JrC%COS(ﬂxm—ﬁb)a sz_\/c%_FC%Sin(ﬁxm_qb)’
Ci =[G+ Goosh(Brn + 1), Cy= [+ sinh(rn + ), ©

c c
tanqﬁz—Z, tanhl,b:i.
C1 C3

To find the coefficients C; (i = 1,2, 3, 4) for the point at x = 0 (i.e., x = x,,) we use the data points around
X = X, to minimize the fitting error. If ; denotes W (x;) and Y; denotes the experimental data at x;, we define
the fitting error Error as

N
Error = Z (W, — Y,)*, (7)
i=—N
where the total number of points used is 2N + 1, and «; is a weighting factor. In this work, we choose to use

1

T 199N |

The four equations to determine C; for the point at x = 0 are given by

OError

e =0 i=1.234 (8)
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After C; are determined, one can obtain W, W', W”, and W for the point at x = 0 by using the following
equations:

w(0) = Ci + Cs,

W'(0) = (Cy + Ca)p,
w'(0) = (=Ci + G) B,
7 (0) = (~C+ Cp

From Egs. (9) and (5) and the observations on Eq. (3) we know that C; represents the central solution of
displacement (at x = x,,), C; represents the boundary-layer solution of displacement caused by boundary
constraints, C,f§ represents the central solution of slope, and Cyf represents the boundary-layer solution of
slope. Damage creates new boundaries to a structure and introduces new boundary-layer solutions to the
structure. When there is no damage at a point away from boundaries, C; and C, should be zero. If C; and
C, are not zero at a point away from boundaries or C; and C4 show sudden change, it implies that boundary
conditions are changed due to damage and/or non-uniform material distribution at that point.

It follows from Egs. (9) and (2) that the maximum elastic energy density II is given by

I = LEw" (0)* = 1EI(Cy — C1)* B = mo* (G5 — C1)°. (10)

©)

Moreover, under steady-state harmonic vibrations the maximum kinetic energy density K is given by

K =im(W(0)w)’ =tma?(C; + C)’. (11)

Hence, the difference between these two energy densities is
K — I = 2mw*C,Cs. (12)

In other words, C,C; is proportional to K — II. Hence, if there is no damage, C; =0 and hence
K —II1 =0 at a point away from boundaries. This is a useful phenomenon to be used for identifying
damage locations.

It is noticed that the sectional standard deviation (SSD) and standard deviation (SD) of the fitting
process are also useful for indicating damage. The SSD is computed as

Sl ) - @)
D= ! . 1
S5 \/ 2N +1 (13)
The overall SD is computed after the C; for every point on the beam are obtained, and it is computed as
M 2
SD = \/an1 [W(xjﬁ\l; Y(xm)] , (14)

where M is the total number of points measured along the beam.

The f in Eq. (5) needs to be estimated before using the linear sliding-window least-squares method
shown in Egs. (7) and (8). To determine f for a high-frequency deflection shape one can plot the experi-
mental ODS and then pick up a representative wavelength A to obtain ff = 2n/A. For a low-frequency
deflection shape (e.g., i < 3 in Eq. (3)), it is difficult to obtain an accurate estimation of f from the ODS.
However, one can use the theoretical value of a beam with boundary conditions similar to the one under
study. It is shown later that for finding damage locations, the proposed method does not require an ac-
curate estimation of . Moreover, if the estimated f is not correct, the sectional standard deviation of the
curve fitting and boundary-layer solutions will show periodic change. Hence, it is easy to know whether the
estimated f§ is correct, and, if necessary, one can revise the estimation and rerun the signal processing.
Furthermore, if necessary, one can use a nonlinear sliding-window least-squares method (Pai and Jin, 2000)
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to find f and C; simultaneously. After f§ is computed using the nonlinear curve fitting, one can estimate the
change of m/EI, Eq. (2) to quantify the damage.
Because polynomials are very often used in curve-fitting, let us consider that

W(x) = C) + Cox + C33* + C4x°. (15)
It follows from Eq. (15) that
WO)=C,,  W(0)=C,  W'(0)=2C,  W"(0)=6C,. (16)

One can also show that
K — I = im(0C)’ —1EI2C5)" = Ima?(C2 — 4p74C3), (17)

where Eq. (2) is used. We note that, if polynomials are used for the curve-fitting, the boundary-layer so-
lutions cannot be separated from the central solutions. Although f is not needed in obtaining Eq. (16), the
calculation of K — IT still requires the estimation of f because the structural properties m and EI are not
required in the BED method and are assumed to be unknown.

2.2. Torsional vibration

For a uniform isotropic torsional bar with y and z being the principal axes of cross-sections, one can use
Vlasov’s beam theory (Vlasov, 1961) to obtain

EJy¢" — Glyd" + Jodp = 0, (18)
where

o I3 J3n
Y2) =y -~ e
Jz E/ysz, J3 E/szA, J23 E/}/deA7 J32 E/)/ZZdA,

A A A A

4J>J3 /

Jy = 2d4, Jy= . Jy= 2 4 22)dA. 19
v= v =g h= [0S (19)

Here E is Young’s modulus, G, the shear modulus, A4, the cross-sectional area, Y, the out-of-plane torsional
warping function, ¢, the torsional angle, and p the mass density per unit volume. We note that the fourth-
order derivative term is due to the torsional warping effect.

The mode shape @ of torsional vibrations can be shown to have the following form:

®(x) = ¢y cos(fx) + ¢ sin(fx) + ¢3 cosh(fx) + ¢4 sinh(fx), (20)
where
—Gly + [ G2} + 4T Sy Gy + 1\ G} + 4ET o
h= 2EJ, - k= 2EJ, ' @)
W 1

Here w is the natural frequency. Hence, equations similar to Egs. (9) and (12) can be derived.
2.3. Longitudinal vibration
Similar to the governing equation of torsional vibrations, in-plane warping restraints introduce higher-

order derivatives to the governing equation of longitudinal vibrations (Giavotto et al., 1983). Hence, the
equation governing longitudinal vibrations of a bar has the form:
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EAwu”™ — EAu" + pAii = 0, (22)

where u is the longitudinal displacement and A4, is a nondimensional parameter accounting for in-plane
warping restraints.
The mode shape U of longitudinal vibrations can be shown to have the following form:

U(x) = ¢; cos(Px) + ¢z sin(fx) + ¢3 cosh(fx) + ¢4 sinh(f,x), (23)

where

(24)

f= —EA + \/E24% + 4EA\ pAc? g = EA + \/E2A> + 4EA pAc?
- 2FA, ’ ! 2EA,, '

Here o is the natural frequency. Hence, equations similar to Egs. (9) and (12) can be derived.

3. Numerical simulation

Damage detection is an inverse problem; it is difficult to obtain a unique solution. Considering both
solution nonuniqueness and experimental noise at the same time will make it very difficult to develop
damage detection methods. Here, we first perform studies using numerical mode shapes without noise to get
a clear idea of what parameters are sensitive to damage in the proposed method. Then, we add normally
distributed random noise to the data to check the robustness of the method. Experimental results are
presented in Section 4.

To obtain numerical mode shapes of a beam with a crack, we model the beam using three beam seg-
ments, as shown in Fig. 1. We consider a clamped-clamped aluminum beam with L = 24.125", b = 0.743",
and & = 0.188”. Young’s modulus £ = 9.15 x 10° psi, and the mass density p = 5.2 slug/ft’. A correction
factor k(<1) can be used to account for the stress concentration effect around the slot by reducing the
bending stiffness of the slotted segment to be kEb(h — 2d)’ /12. However, the value of k highly depends on
the geometry of the crack tip (Shen and Pierre, 1990), and it is difficult to predict the actual value of k of a
crack. Although the stress concentration increases the bending curvature around a crack and makes the job
of finding damage easier (Pai and Jin, 2000), in the following numerical simulations, we will neglect the
stress concentration effect and assume £ = 1 in order to simplify the comparison of different damage effects.
The ith mode shape of the jth beam segment is presented as

W;(x) = 4, cos B;x + B;sin fx + C;cosh f,x + D;sinh f§ x. (25)

Each beam segment has its own f; but there is only one ith natural frequency. Because of the use of hy-
perbolic functions cosh fx and sinh ffx, the origin of x is set at the center of each beam segment to reduce the
chance of numerical singularity. Using the boundary conditions and continuity of displacements, slopes,
bending moments, and shear forces at the junction points, one can solve for the f§; for each beam segment
and the ith natural frequency.

Next, we show the influences of different damages and parameters on damage locating curves.

S I —
o o h-2d*\ hj o o
a b
o o J —Cr— o o |H
L =

Fig. 1. A clamped-clamped aluminum beam with a symmetric open crack.
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3.1. Surface slots

Fig. 2 shows the results of processing the seventh mode shape of the beam shown in Fig. 1 with a sym-
metric crack atx = a + ¢/2 = 0.5L, which is actually a narrow slot. The crack width ¢ = 0.055” and the crack
depth d = 0.15h = 0.0282". Here N = 5 (Eq. (7)) and Ax = L/200 (the distance between two adjacent points
measured) are used. Moreover, W, denotes the maximum value of the ODS. If no crack, the boundary-layer
solutions C; and C, should be zero at points away from boundaries. However, the crack causes a sign change
of Cy4 (slope due to boundary constraints), a peak on C; (displacement due to boundary constraints), and a
peak on SSD at the exact crack location. We note that, if —W(x) is processed, the crack causes a dimple on
C;, instead of a peak. However, the use of —W(x) causes the same dimple on C; x C; because C; x C; is
proportional to the difference between the kinetic and elastic energy densities (Eq. (12)), which is not af-
fected by the sign of W (x). Hence, it is more convenient to use C; * C; than to use C; for locating damage.
The dimple on C; x C; indicates that the kinetic energy is less than the elastic energy around the crack.
Because m and EI are assumed to be constant in the signal processing, the actual large curvature around the
crack causes the estimated elastic energy to be high and hence K — IT < 0. Fig. 2(a) shows that the curve-
fitted ODS (the line connecting the dots) fits well with the numerical ODS (the dots). We note that it is
difficult to find the crack location from the ODS. On the other hand, C; — C; (i.e., W’ see Eq. (9), the thick
line) and C; — C, (i.e., W", the thin line) have significant changes around the crack. However, it will be
shown later in Fig. 9 that these changes are difficult to see when there is measurement noise.

o -
= »n

oDSs, C3-C1, C4-C2
=)

-1.5
0
x10° © @
B Q2o
2.5 b 0.1
b P of
é g-01f
S 1S £
7] 0 -0.2
« 1 ........................... N Lodmmmeeoo
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Fig. 2. Numerical damage locating curves when there is a center symmetric crack with ¢ = 0.055” and d = 0.15A: (a) ODS (dots), fitted
ODS (solid line connecting dots), C; — C (thick line), and C4 — C; (thin line), (b) Cy, (c) SSD/ Wy, and (d) C;  Cs.
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Fig. 3. Numerical damage locating curves when the mass density m of the segment between x = 0.5L — 0.0275” and x = 0.5L + 0.0275”
is only 2% of the other two segments: (a) ODS, fitted ODS, C; — Cy, and Cy — C3, (b) Cy, (¢) SSD/ Wy, and (d) C) * C;.

If the mass density m of the beam segment between x = a and x = a + ¢ is not accordingly reduced, the
results are almost the same as those in Fig. 2. Fig. 3 shows the results when the crack depth d = 0.494,
¢ = 0.055", m of the slotted segment is accordingly reduced, and EI is kept the same for all three segments.
N =5 and Ax = L/200 are used. The peak on C; x C; indicates that the kinetic energy is larger than the
elastic energy around x = a + ¢/2. Because m and EI are assumed to be constant in the signal processing,
the actual large displacement around x = a + ¢/2 causes the estimated kinetic energy to be large and hence
K — 11 > 0. We note that, although the total crack depth 2d = 0.984, the sign change of C4, the peak on
C) * Cs, and the peak on SSD are small. This reveals that flexural mode shapes are mainly controlled by the
bending stiffness £7 and the loss of mass due to a surface crack has insignificant influence. We also note that
it is impossible to locate damage using C; — C, and C; — C; in Fig. 3(a).

3.2. Added lumped masses

Fig. 4 shows the results when there is no crack and a lumped mass of 0.0114mL is added at x = 0.5L.
N =5 and Ax = L/200 are used here. We note that C; — C; and C4 — C; do not have significant sudden
change around the lumped mass, and it is difficult to locate the lumped mass. On the other hand, the sign
change of Cj,, the peak on SSD, and the dimple on C; * C; clearly locate the lumped mass, and their shapes
are different from those due to a crack, as shown in Fig. 2. Because m and EI are assumed to be constant in
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Fig. 4. Numerical damage locating curves when a lumped mass of 0.0114mL is added at x = 0.5L: (a) ODS, fitted ODS, C; — C), and
C4 - Cz, (b) C4, (C) SSD/Wm, and (d) C] * C}.

the signal processing, the actual small displacement around x = 0.5L causes the estimated kinetic energy to
be small and hence K — II < 0 and a dimple appears on C; * C;.

3.3. Added stiffeners

Fig. 5 shows the results when there is no crack and two massless stiffeners having a thickness of 2.5k and
a width of 0.743"(=b) are symmetrically added to the top and bottom of the beam between x =
0.5L — 0.0275” and x = 0.5L + 0.0275". The peak on C; * C; indicates that the elastic energy is less than the
kinetic energy around x = 0.5L. Because m and EI are assumed to be constant in the signal processing, the
actual small curvature around x = 0.5L causes the estimated elastic energy to be small and hence K — IT >
0. Figs. 3 and 5 show that adding a massless stiffener is similar to but not the same as taking away some
mass from the beam. Fig. 6 shows the results if the two symmetric stiffeners have the same mass density as
the aluminum beam. N = 5 and Ax = L/200 are used in Figs. 5 and 6. Fig. 6 is the summation of Figs. 4 and
5. Moreover, Figs. 6 and 2 show that adding a stiffener does not behave exactly opposite to cutting a slot.

3.4. Through-the-width internal holes

Fig. 7 shows the damage locating curves when there is a rectangular through-the-width hole having a
thickness of 0.7/ and between x = 0.5L — 0.0275” and x = 0.5L 4 0.0275”. N = 5 and Ax = L/200 are used.
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Fig. 5. Numerical damage locating curves when two massless stiffeners with a thickness of 2.54 and a width of 0.743” are symmetrically
added between x = 0.5L — 0.0275” and x = 0.5L + 0.0275": (a) ODS, fitted ODS, C; — C,, and C4 — G, (b) Cy4, (c) SSD/W,,, and (d)
Cl * C3.

The dimple on C; * C; in Fig. 7(d) is much smaller than that in Fig. 2(d). It shows that internal holes are
more difficult than surface slots to be detected using transverse vibration ODSs. The reduction of bending
stiffness due to an internal hole is smaller than that due to a surface crack because internal holes are in low
bending stress areas. On the other hand, the reduction of mass is determined only by the volume of the cut-
out, not the location along the thickness direction.

3.5. Side slots

Fig. 8 shows the damage locating curves when there are two symmetric side slots having a depth of 0.15b
and a width of 0.055” at x = 0.5L. N = 5 and Ax = L/200 are used. One can see that these damage locating
curves are similar to those caused by an internal hole, as shown in Fig. 7.

3.6. Noise

For real cases, damage locating curves are affected by experimental noise in different degree. Fig. 9 shows
the results of processing the seventh mode shape of the beam shown in Fig. 1 with a center symmetric crack
having ¢ = 0.055” and d = 0.15A. This case is the same as that presented in Fig. 2 except that we add to the
mode shape a normally distributed random noise having a standard deviation of 0.2% of W,,. Here N = 5
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Fig. 6. Numerical damage locating curves when the thickness of the segment between x = 0.5L — 0.0275” and x = 0.5L + 0.0275" is 6h:
(a) ODS, fitted ODS, C; — Cy, and Cy — C3, (b) Cy, (c) SSD/W;,, and (d) C; * Cs.

and Ax = L/200 are used. The sliding-window length is 2NAx = L/20, and it is about 0.1751, where 4 is the
wavelength of the ODS. We note that it becomes more difficult to locate the crack using the curves of
C; — Cy and C; — C,. However, the sign change of C; at the crack location is still more significant than
those at other locations, and the dimple on C; * C; and the peak on SSD at the crack location are still clear.

3.7. Sliding-window length

To show the influence of the sliding-window length (i.e., 2N Ax) used in the curve fitting we increase Ax
from L/200 in Fig. 9 to 2L/200 in Fig. 10. Figs. 9 and 10 show that increasing the window length smooths
out all damage locating curves, reduces the dimple on C; * C3, reduces the sign change of Cy4, and increases
the peak on SSD. It becomes more difficult to locate damage using C; — C; and C; — C, when the window
length increases, but the dimple on C; * Cj3, the sign change of C4, and the peak on SSD still clearly indicate
the crack location.

We note that C; — C, requires about the same, or a little bit larger, window length than C; % C; to
smooth out the curve. Because C, is much larger than C, and C;, is wavy (see Eq. (6)), C, requires a little bit
larger window length than C; — C, to smooth out the curve. All numerical simulations show that the re-
quired sliding-window length increases in the following order: (1) the difference of kinetic and elastic energy
densities (C; * C3), (2) the curvature (C; — Cy), (3) the central solution of slope (C,), (4) the derivative of
curvature (C4 — ), (5) the boundary-layer solution of slope (Cy), (6) the fitting error (SSD), and (7) the f if
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Fig. 7. Numerical damage locating curves when there is a rectangular through-the-width hole having a thickness of 0.704 and between
x=0.5L — 0.0275" and x = 0.5L 4 0.0275": (a) ODS, fitted ODS, C; — C}, and C4 — Cs, (b) C4, (c) SSD/W,, and (d) C, * C;.

a nonlinear fitting method (Pai and Jin, 2000) is used. When the sliding-window length 2N Ax increases from
a small value, C; * C; becomes smooth and can indicate the damage before C; — C, becomes smooth, and
C, can still indicate the damage after C; — C, becomes too smooth to show damage. Hence, this method is
more sensitive and reliable than damage identification methods using W’ (e.g., energy/curvature methods)
and W (e.g., digital shearography). We note that, when the sliding-window length 2NAx is short, C; are
rough, which may make it difficult to locate damage. On the other hand, when 2N Ax is large, the boundary-
layer effects around the crack are averaged out and it is also difficult to locate damage. However, because
every C; requires a different window length and shows damage locations in a different way, one can perform
two analyses using two different window lengths and then overlap the results to reveal damage locations.

Figs. 2-10 show that it is difficult to distinguish damage locating curves caused by different types of
damage, especially when noise exists. The use of structural dynamic response to predict the type and degree
of damage is an inverse problem and the obtained solution may not be unique, as shown in Figs. 9 and 10.
The estimation of the type and degree of damage from the obtained damage locating curves requires more
studies.

3.8. Mode number

Fig. 11 shows the results of processing the thirteenth mode shape of the beam shown in Fig. 1 with a
center symmetric crack having ¢ = 0.055” and d = 0.154 = 0.0282". Here, we add to the mode shape a
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Fig. 8. Numerical damage locating curves when the width of the segment between x = 0.5L — 0.0275” and x = 0.5L 4 0.0275" is 0.7b:
(a) ODS, fitted ODS, C; — Cy, and Cy — C3, (b) Cy, (c) SSD/W;,, and (d) C; * Cs.

normally distributed random noise having a standard deviation of 0.2% of W,,, and N = 5 and Ax = L/400
are used. The sliding-window length is 2NAx = L/40, and it is about 0.1625, where 4 is the wavelength of
the ODS. We note that the roughness of the damage locating curves is about the same as that in Fig. 9.
When the window length increases to 2NAx = L/20 by using Ax = 2L/400, the results are shown in Fig. 12.
We note that the roughness of the damage locating curves is about the same as that in Fig. 10. This reveals
that the roughness of damage locating curves is determined by the ratio of the window length and the
wavelength, i.e., 2NAx/A. Figs. 10 and 12 show that using high-frequency ODSs gives more localized and
clear damage locating curves. However, a high-frequency ODS requires more points to be measured in
order to show a smooth deflection shape.

3.9. Damage location

Figs. 13-15 show the damage locating curves of a symmetric crack with ¢ = 0.055” and d = 0.154 at
x=0.46L, x =0.42L, and x = 0.9L, respectively. N =5 and Ax = L/200 are used. Figs. 13 and 14 show
that, when the crack is at a low curvature area, the peaks and sign changes of damage location curves are
small and it is difficult to locate damage. Fig. 15 shows that overlapping the results of two analyses using
two different window lengths clearly reveals the damage location even if the damage is in a boundary-layer
zone. The thin lines in Fig. 15(b)—(d) are obtained using N =5 and Ax = 2L/200. If the thin lines in
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Fig. 9. Numerical damage locating curves when there is a center symmetric crack, ¢ = 0.055”, d = 0.15k, 0.2% noise is added to the 7th
mode shape, N =5, and A = L/200: (a) ODS, fitted ODS, C; — Cy, and C4 — Cs, (b) Cy, (c) SSD/ Wy, and (d) C; * Cs.

Fig. 15(b) and (d) are subtracted from the thick lines, the resulting curve shapes around the crack are
similar to those in Fig. 2(b) and (d), which indicates that the damage is a crack.

3.10. B Value

Fig. 16 shows the damage locating curves of a symmetric crack with ¢ = 0.055” and d = 0.154 at
x = 0.5L, which is the case shown in Fig. 2 except that the estimated f is different from the actual value.
N =5 and Ax = L/200 are used. We note that, if § is erroneously estimated, the BED method still works
except that boundary-layer solutions become non-zero everywhere. The thin lines in Fig. 16(b)—(d) are
obtained using N = 5 and Ax = 2L/200. Again, overlapping the results of two analyses using two different
window lengths clearly reveals the damage location even when the estimated f§ is wrong.

3.11. Non-uniform distributions of stiffness and mass

Fig. 17 shows the damage locating curves of the beam shown in Fig. 1 with no crack and the segment
between x = 8.0625” and x = 16.0625” having a thickness of 1.34 = 0.2444". N =5 and Ax = L/200 are
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Fig. 10. Numerical damage locating curves when there is a center symmetric crack, ¢ = 0.055”, d = 0.15h, 0.2% noise is added to the
7th mode shape, N = 5, and A = 2L/200: (a) ODS, fitted ODS, C; — Cy, and C4 — C, (b) Cy4, (c) SSD/ Wy, and (d) C;  Cs.

used. The thin lines in Fig. 17(b)—(d) are obtained using N = 5 and Ax = 2L/200. Again the overlapping of
two analyses using two different window lengths clearly reveals the location of the stiffened segment. If the
thin lines in Fig. 17(b) and (d) are subtracted from the thick lines, the peaks and/or dimples of AC4 and the
sign changes of AC) % C; indicate the edges of the stiffened segment, which are different from damage lo-
cating curves of a crack.

4. Experiments
4.1. Experimental setup and procedures

Fig. 18 shows the experimental setup used in measuring ODSs of a beam. A Polytec PSV-200 scanning
laser vibrometer is used to measure the velocities of M equally spaced points along the beam, and a lead
zirconate titanate (PZT) patch is attached to the root of the beam for excitation. The PZT patch is a
quickpack QP10N actuator purchased from ACX (Active Control Experts, Inc., Cambridge, MA.). The
quickpack actuator packages piezoceramics in a protective skin (a polyimide coating) with pre-attached
electrical leads. The QP10N patch has dimensions 2" x 1”7 x .015”, and its piezo wafer size is 1.81” x
0.81” x .010”. The maximum allowable operating voltage of the PZT patch is 200 V.
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Fig. 11. Numerical damage locating curves when there is a center symmetric crack, ¢ = 0.055”, d = 0.15k, 0.2% noise is added to the
13th mode shape, N = 5, and A = L/400: (a) ODS, fitted ODS, C; — Cj, and C; — C,, (b) Cy, (¢) SSD/W;,, and (d) C; x Cs.

The PCB-790 power amplifier magnifies, by 20 times, the sinusoidal voltage from the HP-33120A 15
MHz function generator and sends it to the PZT patch. The OFV-3001-S vibrometer controller controls the
rotation of the two mirrors in the OFV-055 scan head and the scanning of the laser beam, and it receives the
interferometry created by the backscattered laser beam and the reference laser beam in the OFV-303 sensor
head. The output voltage from the HP-33120A function generator is also used as the input signal to channel
A of the OFV-3001-S vibrometer controller. The OFV-3001-S controller includes two independently
programmable low-pass filters for filtering the signal from the HP-33120A function generator and the signal
from the OFV-303 sensor head, respectively. After filtering, these two signals are sent from channels A and
B of the controller to the 400 MHz computer system, which is operated by Windows NT and processes
the measured data. The video control box controls the swiveling and tilting of the OFV-055 scan head and
the focusing of the video camera in the OFV-055 scan head. A standardized composite video signal from the
camera is passed via a BNC connection on the video control box to the video input of the computer system.

In the experiments we first perform an “FFT” acquisition to obtain FRFs using a periodic chirp ex-
citation, and then we choose an isolated natural frequency from the averaged FRF. After that we perform a
“FAST SCAN” acquisition using a single-frequency excitation at the chosen frequency to obtain the
corresponding ODS.

The noise level of the measured ODSs is primary determined by the frequency bandwidth B, used in the
“FAST SCAN” acquisition. The noise level is proportional to v/By. However, the minimum bandwidth is
limited to 0.02% of the excitation frequency, and the data acquisition time increases when B,, decreases.
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Fig. 12. Numerical damage locating curves when there is a center symmetric crack, ¢ = 0.055”, d = 0.15h, 0.2% noise is added to the
13th mode shape, N = 5, and A = 2L/400: (a) ODS, fitted ODS, C; — Cy, and Cy — C3, (b) C4, (c) SSD/W;,, and (d) C; x C;.

Hence, the noise level of high-frequency ODSs obtained using the “FAST SCAN’ acquisition can be high.
However, the noise level of the ODSs obtained in this study is estimated to have a standard deviation below
1% of the maximum value of the corresponding ODS.

4.2. Experimental results

Tests on six different structures with different types of damage are used here to show the reliability and
robustness of the proposed BED method.

4.2.1. Case I: a cantilevered beam with three cracks

Fig. 19 shows a 24.125" x 0.743" x 0.188” cantilevered aluminum beam with three cracks, which are
actually narrow slots. The crack width is 0.055”, and the crack depths are shown in the figure. Young’s
modulus is experimentally determined to be E = 9.15 x 10° psi, and the mass density is p = 5.2 slug/ft>.
Cracks #2 and #3 are cut after Crack #1, and the crack depths of Cracks #1, #2, and #3 are about 28%,
16%, and 12% of the beam thickness, respectively. The laser beam from the laser vibrometer scans the
backside of the beam to measure velocities of 200 or 400 equally spaced points.

Fig. 20 shows the results of processing the ODS corresponding to the sixth mode with only Crack #1.
The unit of ODSs is meter/second, and W,, denotes the maximum value of the ODS. Crack #1 reduces the
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Fig. 13. Numerical damage locating curves when there is a symmetric crack with ¢ = 0.055” and d = 0.154 at x = 0.46L: (a) ODS, fitted
ODS, C3 — C[, and C4 — Cz, (b) C4, (C) SSD/Wm, and (d) C] * C}.

6th natural frequency from 840.0 to 834.4 Hz according to the averaged FRF curve. Using the ampli-
tude shown in Fig. 20(a) and the natural frequency one can show that the vibration amplitude is small and
has a value of 0.025 mm. We use N =5 and Ax = 2L/200 here, and the thin lines in Fig. 20(b)—(d) are
obtained using N = 5 and Ax = 4L/200. We note that it is impossible to tell from Fig. 20(a) the difference
between the measured ODS (dots) and the curve-fitted shape (the solid line connecting the dots) because
the overall standard deviation SD is 0.13% of . It is also impossible to find the crack location from the
ODS.

Fig. 20(a) shows that, if a small Ax is used in the curve-fitting, the sudden changes on C; — C; and
C, — C, show the possible areas of damage, but it is difficult to find the exact damage location because of
noise. Moreover, when Ax increases, C; — C; and C, — C, smooth out quickly and it becomes impossible to
find the crack from them. On the other hand, damage can be easily located using C; * C;, C4, and SSD.

Fig. 20(d) shows that, away from boundaries, C; * C; is zero except around the crack and it has a dimple
at the exact crack location. Moreover, Fig. 20(b) shows that, away from boundaries, C4 is zero except
around the crack and it changes sign at the exact crack location. Furthermore, Fig. 20(c) shows that SSD
has a peak at the crack location. To assure the identified locations of small cracks, one can check against
each other the dimples on Cj; * Cy, the sign changes of C,, and the peaks on SSD. Moreover, Fig. 20(b)—(d)
shows that, when Ax increases, C; — C;, C4 — C,, C4, and C; * C; become smooth and SSD increases and
peaks up at the crack location. Hence, overlapping damage locating curves obtained using two different
window lengths makes damage locations more clear. The two peaks around x/L = 0.2 and 0.8 in Fig. 20(c)
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Fig. 14. Numerical damage locating curves when there is a symmetric crack with ¢ = 0.055” and d = 0.15h at x = 0.42L: (a) ODS, fitted
ODS, C; — Cy, and Cy — Gy, (b) C4, (¢c) SSD/ Wy, and (d) C, * C;.

do not increase when Ax increases, which indicates that they are not due to damage and are due to the laser
vibrometer system itself or the surface condition of the beam.

Cracks #1-3 reduce the 8th natural frequency from 1551 to 1529 Hz according to the averaged FRF,
where a frequency resolution of 0.781 Hz is used in the “FFT” acquisition. Fig. 21 shows the damage
locating curves. Here, we use N =5 and Ax = 3L/400, and the thin lines in Fig. 21(b)—(d) are obtained
using N = 5 and Ax = 5L/400. Fig. 21(a) shows that it is difficult to locate the cracks using C; — C; and
C4 — C,. However, one can easily identify the three crack locations from the dimples on C; * C3, the sign
changes of C4, and the peaks on SSD. Because Crack #3 is smaller than the other two cracks and it is not
right on one of the peaks of the ODS, the corresponding dimple on C; * C; is smaller. However, we point
out here that a crack indicated by a small peak on SSD and a small dimple on C, * C; may not really be a
small crack because it depends on the specific ODS under examination and the crack location.

Figs. 20(c) and 21(c) show that, when the window length increases, the SSD around x = 0 increases. This
is because the actuation force from the PZT patch causes deviation of the ODS from the free vibration
mode shape.

4.2.2. Case 2: a simply supported beam with five asymmetric side cracks
Fig. 22 shows a simply supported aluminum beam with five asymmetric side cracks. The crack width w
of every crack is 0.045”, and the crack depth d of each crack is shown in Fig. 22. Because of asymmetry, the
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Fig. 15. Numerical damage locating curves when there is a symmetric crack with ¢ = 0.055” and d = 0.15k at x = 0.9L: (a) ODS, fitted
ODS, C3 — Cl, and C4 — Cz, (b) C4, (C) SSD/Wm, and (d) Cl * C3‘

beam vibration consists of transverse and torsional vibrations. This experiment is to test the robustness of
the BED method in locating multiple cracks using a transverse ODS contaminated by torsional defor-
mation.

We use N =5 and Ax =3L/600 in Fig. 23, and the thin lines in Fig. 23(b)—(d) are obtained using
Ax = 6L/600. The frequency of the ODS is 3328 Hz. We note that the five cracks are clearly identified by
the dimples on C; * C; and the peaks on SSD. Although C, is rough, it always changes sign at each crack
location and the change is larger than those at other locations without damage. The dimple at Crack #1 in
Fig. 23(d) is smaller than that at Crack #2 because Crack #1 is close to a node but Crack #2 is close to a
peak of the ODS, as shown in Fig. 23(a).

The peak at the left side of Crack #1 on the thin line in Fig. 23(c) is caused by the excitation bending
moment applied by the PZT patch.

4.2.3. Case 3: a clamped—clamped pretensioned beam with five side cracks

We find that it is difficult to use other lower-frequency ODSs of the beam shown in Fig. 22 to locate all
cracks using only one ODS. Hence, we clamp the beam and apply an arbitrary pretension to the beam. The
intention is to prevent torsional vibrations and to bring stress concentration effects into ODSs. The setup
changes the left segment length in Fig. 22 to 5.95” and the right segment length to 6.33".

Fig. 24 shows that the five dimples on C; x C; and the five peaks on SSD clearly indicate the crack
locations. We use N =5 and Ax = 3L/600, and the thin curves in Fig. 24(b)—(d) are obtained using
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Fig. 16. Numerical damage locating curves when there is a center symmetric crack with ¢ = 0.055” and d = 0.154 and the f is erro-
neously estimated: (a) ODS, fitted ODS, C; — C), and C4 — C3, (b) C4, (c) SSD/ Wy, and (d) C) * C;.

Ax = 6L/600. The frequency of the ODS is 787.5 Hz, which is much lower than that of Fig. 23. Because of
the use of a small Ax and a low-frequency ODS, C; — C; in Fig. 24(a) is rough.

4.2.4. Case 4: a cantilevered beam with four cracks and two holes

To further test the BED method we consider a 28.8" x 0.743” x 0.188” aluminum beam with four cracks
and two holes through the beam width, as shown in Fig. 25. The crack width is 0.045", the crack depths d
are shown in the figure, and the diameter D of holes is 0.086”, which is about 46% of the beam thickness.
Young’s modulus is experimentally determined to be E = 9.15 x 10° psi, and the mass density is p = 5.2
slug/ft3.

We use N =5 and Ax =2L/600 in Fig. 26, and the thin lines in Fig. 26(b)-(d) are obtained using
Ax = 6L/600, where the frequency of the ODS is 1637 Hz. We note that all the four cracks are clearly
indicated by the dimples on C; * C; and the peaks on SSD. Fig. 26(d) shows that, although Crack #6 is
within a boundary-layer zone, this method still can locate it. To identify cracks within boundary layers, one
needs to subtract the curve obtained using a large Ax from the curve obtained using a small Ax.

The two holes cannot be identified in Fig. 26 because each of them is close to a node of the ODS. Hence,
we use another ODS to locate them, as shown in Fig. 27. We use N = 5 and Ax = 2L/600 in Fig. 27, and the
thin lines in Fig. 27(b)—(d) are obtained using Ax = 6L/600, where the frequency of the ODS is 2015 Hz.
We note that all the four cracks and two holes are clearly indicated by the dimples on C; x C3. However,
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because Cracks #1 and #3 are not at the peaks of this ODS, the dimples are smaller than those in Fig.
26(d). Moreover, because the two holes are not at the peaks of the ODS and because these holes are in low-
stress areas and do not significantly reduce the bending stiffness, the two corresponding dimples on C; * C;
are also small and the holes are not clearly shown on the SSD curve. This observation reveals that it may be
better to use longitudinal or torsional ODSs, instead of bending ODSs, for detecting internal holes. This
topic requires more studies.

4.2.5. Case 5: a rectangular plate with one hole

Fig. 28 shows a 30" x 22.8” x 0.122” aluminum plate with a hole through its thickness. The diameter of
the hole is 0.162”, which is a little bit larger than the plate thickness. The plate is slightly curved. Vibration
velocities of points along two lines equally separated by the hole at the mid point by 0.7” are obtained. The
ODS along the line passing through the hole is estimated by taking the average of the two ODSs measured
along the two lines. Fig. 29 shows the obtained damage locating curves. We use N = 5 and Ax = 2L /477,
and the thin lines in Fig. 29(b) and (d) are obtained using Ax = 6L/477. The ODS is a low-order one, and
the frequency is 1717 Hz. This low-order ODS is chosen because the 2” x 1”7 x 0.015” PZT patch attached
at the center of the backside of the plate is too small to excite other high-order ODSs to have enough
amplitudes. The thin line in Fig. 29(d) is not zero at points away from the boundaries because this ODS has
a non-zero Gaussian curvature (Shames and Dym, 1985). Subtracting the thin line from the thick curve in
Fig. 29(d) yields a curve that has a big dimple around x = 0.5L with a shape similar to that in Fig. 20(d)



P.F. Pai, L.G. Young | International Journal of Solids and Structures 38 (2001) 3161-3192 3183

Window NT .

by

e

=
=)

0 &= 400 MHz =i
PCB 790 N |

power amp. / \

video control box

HP 33120A

controller fun. gen.
Q

—
@ l:l DEEEEEEEE =
OFV-3001-§ ——=——

pan/tilt

video

scanner

OFV-055 scan head

interferometer

| sehsor head| 1

test structure

Fig. 18. The experimental setup for measuring operational deflection shapes of structures using a PSV-200 scanning laser vibrometer
and a PZT patch.

& ) N
& 5 S s
4 > > ) R
Il#s 1 "#2 (743"
5.86" 6.17" 6.06"
24.125"

Fig. 19. A cantilevered aluminum beam with three cracks.

around Crack #1, which assures that it is a damage location. On the other hand, the dimple around
x/L = 0.34 is due to measurement noise because its shape is different from that of a damage. The peak on
SSD and the sign change of C, also confirm the damage location.

4.2.6. Case 6: a cantilevered thick beam with an actual crack

Fig. 30 shows a 14.5” x 1.8” x 0.5” aluminum beam with an actual through-the-thickness side crack at
the mid point of the scanned length. The crack depth is unknown but is estimated to be about 0.35 = 0.54".
It is difficult to detect the crack using naked eyes, and it is hard to open the crack because the beam is thick.
However, the damage curves obtained using the ODS at 3060 Hz clearly show the location of the crack, as
shown in Fig. 31. We use N = 5 and Ax = 2L/200 in Fig. 31, and the thin lines in Fig. 31(b) and (d) are
obtained using Ax = 6L/200. Using the amplitude shown in Fig. 31(a) and the natural frequency one can
show that the vibration amplitude is very small and has a value of 2.6 um. We point out here that the ODS
is a low-order one because it is difficult to excite high-order ODSs of this thick beam to have certain
amplitude values by using a small PZT patch.
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Fig. 20. Experimental damage locating curves of the beam in Fig. 19 with Crack #1: (a) ODS (dots), fitted ODS (solid line connecting
dots), C; — C) (thick line), and Cy — C, (thin line), (b) Cy, (c) SSD/ W, and (d) C) * C;.

4.3. Discussion

The BED method works because boundary-layer solutions can be separated from central solutions by
using the proposed sliding-window curve-fitting method and because each C; in Eq. (5) has a physical
meaning. Moreover, results show that each C; requires a different sliding-window length in order to smooth
its curve. Hence, damage locating curves obtained using two different sliding-window lengths can be
overlapped to reveal damage. The BED method also provides multiple damage indicators. C; * Cs indicates
crack locations by dimples, SSD indicates crack locations by peaks, and Cy indicates crack locations by sign
changes. Results show that SSD has the highest sensitivity to damage and measurement noise, and C; * C3
has the lowest sensitivity.

The merits of the BED method are summarized here.

(1) This is a model-independent method; no model is required for comparison.

(2) Setting-up a scanning laser vibrometer for on-site vibration measurements requires much less time
than setting-up a conventional multiple-sensor system, and this method can examine large structural sys-
tems easily and quickly.

(3) Because this method only requires the excitation force to be periodic, it can be used for on-site
damage inspection using working excitations, such as excitations caused by the operating engine of the
vehicle under examination.
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Fig. 21. Experimental damage locating curves of the beam in Fig. 19 with the three cracks: (a) ODS, fitted ODS, C; — C, and Cy — (3,
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Fig. 22. A simply supported aluminum beam with five side slots.

(4) Because this method uses no historical data, it works even when the dynamic characteristics of a
structure are changed by harmless environmental factors, such as temperature, moisture, and boundary
conditions.

(5) This method provides multiple damage indicators that can be used to check against each other to
ensure the identified damage locations.

(6) Because this method uses only experimental ODSs, identified damage locations can be easily pointed
out by using the visual and laser pointing system of the Polytec PSV-200 scanning laser vibrometer.

(7) This method can provide different levels of accuracy for different levels of inspection and mainte-
nance. For a low-level inspection, only a small number of points need to be measured.
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Fig. 23. Experimental damage locating curves of the beam in Fig. 22: (a) ODS, fitted ODS, C; — Cy, and Cy — 3, (b) Cy, (c) SSD/W;,,
and (d) C; % C;.

The experimental results show that the BED method can detect small surface cracks having a crack
depth of 12% of the beam thickness and small side cracks having a crack depth of 7% of the beam width. To
improve the sensitivity and accuracy of this BED method and to develop it into a method for actual on-site
structural damage detection the following problems require more studies.

(1) One ODS can only detect damage around its peaks. To ensure all possible damages will be located,
several ODSs with their peaks covered the whole structural area need to be examined. Choosing the ap-
propriate ODSs is a problem to be solved.

(2) The noise level of the measured ODSs is primary determined by the frequency bandwidth By, used in
the “FAST SCAN” acquisition. The noise level is proportional to /B,. Hence, one can reduce 1/B,, to
reduce noise. However, the minimum bandwidth is 0.02% of the excitation frequency, and the data ac-
quisition time increases when B,, decreases. Hence, the noise level of a high-frequency ODS obtained using
the “FAST SCAN” acquisition can be high, and the acquisition time can be long. Hence, how to reduce the
frequency bandwidth needs to be studied.

(3) The accuracy of this method is controlled by the measurement noise contained in ODSs. Hence, the
noise pattern of ODSs needs to be studied.

(4) Because of measurement noise, the ODS amplitude needs to have a certain value in order to contain
clear information of small cracks. Moreover, the results show that high-frequency ODSs are better than
low-frequency ODSs for locating damage. However, a high-frequency ODS requires high power in order to
have a significant amplitude. Hence, a high-power amplifier is needed.
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Fig. 24. Experimental damage locating curves of the beam in Fig. 22 with both ends clamped: (a) ODS, fitted ODS, C; — C), and
Cy — C3, (b) Cy, (¢) SSD/ Wy, and (d) C * Cs.
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Fig. 25. A cantilevered aluminum beam with four cracks and two internal holes.

(5) For very thick and stiff structures, only low-order ODSs can be excited. Because low-order ODSs
have small W” and W and their boundary-layer solutions spread across the whole structure, it is difficult to
find cracks using low-order ODSs. Modification of the BED method for detecting damage using low-order
ODSs needs to be studied.

(6) If the measured area is of nonuniform thickness or material, boundary effects exist everywhere.
Extraction of the boundary effects due to damage from the boundary solutions needs more studies.

(7) The experimental results shown in Fig. 29 indicate that the BED method also works for structures
with small initial curvatures. To work for shell-type structures with significant initial curvatures the BED
method needs to be modified.
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Fig. 26. Experimental damage locating curves of the beam in Fig. 25 when a 1637-Hz ODS is used: (a) ODS, fitted ODS, C; — C, and
C4 - Cz, (b) C4, (C) SSD/VV;“, and (d) Cl * C3.

(8) Torsional and longitudinal ODSs are shown in Sections 2.2 and 2.3 to be appropriate for using the
BED method to locate damage, but it is difficult to excite such ODSs using PZT patches, even using the
concept of bi-moments (Pai et al., 1997). Moreover, although one can assume f;, = f§ in Egs. (20) and (23)
when using the BED method, the obtained boundary-layer solutions change when the sliding-window
length changes.

5. Concluding remarks

The BED method works by extracting boundary-layer solutions from experimental ODSs using a
sliding-window least-squares curve-fitting method. Boundary-layer solutions are sensitive to damage, and
they provide multiple damage indicators that can be checked against each other to assure the identified
damage locations. The BED method requires no model or historical data for comparison. Numerical
simulations are performed to show the BED method in locating different types of damage. Experiments are
performed on several different beams with different types of damages. Numerical and experimental results
show that the BED method is sensitive and reliable for locating small damages. However, more studies are
needed before this method can be used for on-site structural damage detection.
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Fig. 27. Experimental damage locating curves of the beam in Fig. 25 when a 2015-Hz ODS is used: (a) ODS, fitted ODS, C; — C, and
Cy — Gy, (b) C4, (¢) SSD/ Wy, and (d) C, * C5.
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Fig. 28. A 30" x 22.8” x 0.122” aluminum plate with a hole having a diameter of 0.162".
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Fig. 29. Experimental damage locating curves of the plate in Fig. 28: (a) ODS, fitted ODS, C; — C, and C4 — C;, (b) Cy, (c) SSD/ W,
and (d) C; * C;.
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Fig. 30. A 14.5" x 1.8” x 0.5” cantilevered aluminum beam with an actual through-the-thickness side crack at the mid point of the
scanned length.
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Fig. 31. Experimental damage locating curves of the beam in Fig. 30: (a) ODS, fitted ODS, C; — Cy, and C4 — Cs, (b) Cy, (c) SSD/ W,
and (d) C| * C;.
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